## NHR-5400 系列 60 段人工智能 PID 温控器使用说明书

## 一、产品介绍

NHR-5400 系列 60 段人工智能 PID 温控器采用真正的人工智能算式,仪表启动自整定功能,可以根据被控对象的特性,自动寻找最优参数以达到很好的控制效果,无需人工整定参数。控温精度基本达±0.1℃,无超调、欠调,达国际先进水平。适用于需要进行高精度多段曲线程序升/降温控制的系统,可根据生产过程的要求,按照一定的曲线进行控制,最多可分 60 段曲线对象进行编程控制,每一段均采用 PID 参数设定控制,使控制更为精确可靠,方便灵活的曲线控制功能,可实时监控曲线程序段的运行时间和状态,多种事件输入功能。具有多种曲线控制输出功能,可实现曲线控制暂停、清零、步进等功能,并可实现手/自动无扰动切换。

## 二、技术参数

| 输入       |                                              |                                   |                                 |               |  |  |  |  |
|----------|----------------------------------------------|-----------------------------------|---------------------------------|---------------|--|--|--|--|
| 输入信号     | 电压                                           | 电流                                | 电阻                              | 电偶            |  |  |  |  |
| 输入阻抗     | ≥500ΚΩ                                       | ≤250Ω                             |                                 |               |  |  |  |  |
| 输入电流最大限制 |                                              | 30mA                              |                                 |               |  |  |  |  |
| 输入电压最大限制 | <6V                                          |                                   |                                 |               |  |  |  |  |
| 输出       |                                              |                                   |                                 |               |  |  |  |  |
| 输出信号     | 电流                                           | 电压                                | 继电器                             | 24V 配电或馈电     |  |  |  |  |
| 输出时允许负载  | ≤500Ω                                        | ≥250KΩ(注: 需要<br>更高负载能力时须<br>更换模块) | AC220V/2A<br>DC24V/2A           | ≤30mA         |  |  |  |  |
| 调节输出     |                                              |                                   |                                 |               |  |  |  |  |
| 控制输出     | 继电器                                          | 单相可控硅                             | 双相可控硅                           | 固态继电器         |  |  |  |  |
| 输出负载     | AC220V/2A<br>DC24V/2A                        | AC660V/0.1A                       | AC600V/5A (如果<br>直接驱动,必须注<br>明) | DC12V/30mA    |  |  |  |  |
| 综合参数     | 1                                            | <u> </u>                          |                                 | <u> </u>      |  |  |  |  |
| 测量精度     | 0.2%FS±1 字                                   |                                   |                                 |               |  |  |  |  |
| 设定方式     | 面板轻触式按键数字                                    | Y设定;参数设定值密                        | 码锁定;设定值断电流                      | k久保存。         |  |  |  |  |
| 显示方式     | LED 红/绿数码管双排                                 | <b>非显示</b>                        |                                 |               |  |  |  |  |
| 使用环境     | 环境温度: 0~50℃;                                 | ; 相对湿度: ≤85%RH;                   | ; 避免强腐蚀气体。                      |               |  |  |  |  |
| 工作电源     | AC 100~240V(开关电源)(50/60Hz); DC 20~29V(开关电源)。 |                                   |                                 |               |  |  |  |  |
| 功耗       | ≤5W                                          |                                   |                                 |               |  |  |  |  |
| 结构       | 标准卡入式                                        | 标准卡入式                             |                                 |               |  |  |  |  |
| 通讯       | 达: 15 米。                                     | RTU 通讯协议,RS485<br>能时,通讯转换器最好      |                                 | ; RS232 通讯距离可 |  |  |  |  |

## 三、仪表的面板及显示功能



### 1) 仪表外形尺寸及开孔尺寸

| 外形尺寸         | 开孔尺寸     |
|--------------|----------|
| 160*80mm(横式) | 152*76mm |
| 80*160mm(竖式) | 76*152mm |
| 96*96mm(方式)  | 92*92mm  |

### 2)显示窗

PV 显示窗:显示测量值;在参数设定状态下,显示参数符号。

SV 显示窗: 手动状态下显示 PID 运算结果;自动状态下的显示内容可通过二级菜单中的 DISP 进行定义;参数设置状态下显示设定参数值。

SGE 显示窗: 自动状态下,显示运行段号; 手动状态下,显示手动标志 0=

3) 面板指示灯

A/M: 手/自动切换指示灯

EV1: 事件报警指示灯

AL1: 第一报警指示灯

AL2: 第二报警指示灯

OP1: 输出指示灯

OP2: 输出指示灯

OP3: 输出指示灯

OP4: 输出指示灯

4) 操作按键

|          | 确认键:数字和参数修改后的确认     |
|----------|---------------------|
|          | 翻页键:参数设置下翻键         |
| O        | 退出设置键:长按2秒可返回测量画面   |
|          | 配合☑键可实现自动/手动控制输出的切换 |
|          | 配合【键可实现控制曲线的清零      |
| 4        | 位移键:按一次数据向左移动一位     |
| 4        | 返回键:长按2秒可返回上一个参数    |
| <b>—</b> | 减少键:用于减少数值          |
|          | 带打印功能时,显示时间         |
| <u> </u> | 增加键:用于增加数值          |
|          | 带打印功能时,用于手动打印       |

### 5) 仪表配线

仪表在现场布线注意事项:

PV 输入 (测量输入)

- 1. 减小电气干扰,低压直流信号和传感器输入的连线应远离强电走线,如果做不到应采用屏蔽导线, 屏蔽导线的屏蔽层一端接地。
  - 2. 在传感器与端子之间接入的任何装置,都有可能由于电阻或漏电流而影响测量精度。 热电偶或高温计输入

应采用与热电偶对应的补偿导线作为延长线,最好采用带屏蔽层保护的补偿导线。

RTD (热电阻)输入

三根导线的线阻抗必须相等,并且线阻抗不可超过 **15Ω**;若使用导线未满足以上其中一个要求将导致热电阻测量偏差。

### 6) 仪表操作说明

1、自动/手动无扰动切换方法

在仪表自动控制输出模式下,同时按压"℃"和"℃"键,仪表将自动跟踪输出量,此时可按"℃"或"℃"键手动改变仪表输出量的百分比(范围:0~100%)。手动状态下,仪表显示为:

2、手动/自动无扰动切换方法

在仪表手动控制输出模式下,同时按压"☑"和"☑"键,仪表将回至自动控制状态,自动状态下,仪表显示为:

★本仪表具有记忆功能,在自动状态切换为手动状态前,如果仪表为暂停状态,则仪表从手动切换 为自动状态后,亦为暂停状态。如果仪表为非暂停状态,则从手动切换为自动状态,仪表为非暂停状态。

### 3、曲线控制功能键

曲线控制暂停:在实时测量显示状态下,按压"【"键,则温控器以当前目标值作为控制目标值进行控制。在曲线控制暂停状态下,按压"【"键,则取消暂停功能,仪表从当前控制曲线进入自动运行控制输出。曲线控制暂停状态下,仪表显示如下:

曲线控制清零:在自动控制状态下,同时按压"◎"键和"◎"键,则控制曲线跳转到 STA 设定的起始段开始执行控制。如:当前曲线为第三段,同时按压"◎"键和"◎"键后,则程序曲线从(STA=1)曲线开始控制输出。

曲线控制步进:在自动控制、非暂停状态下,同时按压"◎"键和"◎"键,则程序升温控制进至下一曲线控制。如:当前控制曲线为第三段,同时按压"◎"键和"◎"键后,控制曲线则为第四段。

- 4、时间显示切换方式
- a. 在 PV 显示实时测量的状态下,按下"∑"键,则仪表 PV 显示当前时间。
  - b. 在 PV 显示当前时间的状态下,松开"☑"键,则仪表 PV 恢复实时测量值显示。



5、时间设定

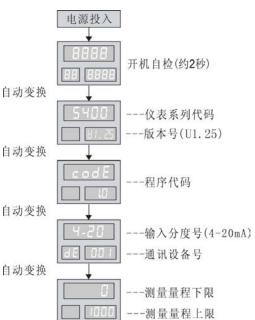
在仪表 PV 显示测量值的状态下,按压"□"键进入参数,设定 LOC=130,在 PV 显示 LOC,SV 显示 130 的状态下,按压"□"键 4 秒,即进入时间参数设定,仪表 PV 显示"d=14",SV 显示"1009"表示当前日期 2014 年 10 月 09 日,在此状态下,可参照仪表参数设定方法,设定当前日期。在仪表当前日期显示状态下,按压"□"键,仪表 PV 显示"T=15",SV 显示"3045"表示当前时间 15 点 30 分 45 秒,在此状态下,可

参照仪表参数设定方法,设定当前时间。在仪表当前时间显示状态下,再次按压"◎"键 4 秒,则退出时间设定,回至 PV 测量值显示状态。

### 四、通电设置

仪表接通电源后进入自检(自检状态见右图),自检完毕后,仪表自动转入工作状态,在工作状态下,按压"☑"键显示 LOC。

LOC 参数设置如下:


- 1. 1) Loc 等于任意参数可进入一级菜单(LOC=00; 132 时无禁锁);
  - 2) Loc=132, 按压"♀"键 4 秒可进入二级菜单;
  - 3) Loc=130,按压"<sup>©</sup>"键4秒可进入时间设置菜单;
  - 4) Loc 等于其它值,按压"⑤"键 4 秒退出到实时测量状态。
- 2.如果 Loc=577, 在 Loc 菜单下,同时按住"◎"键和"◎"键 达 4 秒,可以将仪表的所有参数恢复到出厂默认设置。

3.在其它任何菜单下,按压"♀"键 4 秒可退出到实时测量状态。

### ★返回工作状态

1.手动返回: 在仪表参数设定模式下, 按压"<sup>□</sup>"键 4 秒后, 仪表即自动回到实时测量状态。

2.自动返回:在仪表参数设定模式下,不按任何按键,30 <sup>自动变换</sup>秒后,仪表将自动回到实时测量状态。



# 五、参数设置

### 5. 1一级参数设置

在实时测量状态下,按压᠍键 PV 显示 LOC,SV 显示参数数值:按☑或☑键来进行设置,长按델键 2 秒可返回上一个参数,Loc 等于任意参数可进入一级参数。

| 出厂设置           | 参数                            | 设定范围       | 说明                                                                                  |  |  |
|----------------|-------------------------------|------------|-------------------------------------------------------------------------------------|--|--|
|                | Loc<br>设定参数禁锁                 | 0~999      | LOC=00: 无禁锁(一级参数可修改)<br>LOC≠00, 132: 禁锁(一级参数不可修改)<br>LOC=132: 无禁锁(一级参数、二级参数可修改)     |  |  |
| AL1<br>50      | 8L  <br>第一报警值                 | -1999~9999 | 第一报警的报警设定值                                                                          |  |  |
| AL2<br>50      | AL2<br>第二报警值                  | -1999~9999 | 第二报警的报警设定值                                                                          |  |  |
| AL3<br>50<br>Q | 8L3<br>第三报警值                  | -1999~9999 | 第三报警的报警设定值                                                                          |  |  |
| AL4<br>50      | 814<br>第四报警值                  | -1999~9999 | 第四报警的报警设定值                                                                          |  |  |
| LBA 100        | LBR<br>控制环断线<br><b>/</b> 短路报警 | 1∼9999 (S) | 当仪表控制输出量等于 PID 或 PIDH,并且连续时间大于 LBA 设定时间,而 PV 测量值无变化,则判断为控制环故障,输出报警。(设定 LBA 报警时有此参数) |  |  |

| AH1<br>10                          | 吊H¦<br>第一报警回差   | 0∼9999             | 第一报警的回差值                                                                                        |
|------------------------------------|-----------------|--------------------|-------------------------------------------------------------------------------------------------|
| AH2 10                             | 8∦∂<br>第二报警回差   | 0∼9999             | 第二报警的回差值                                                                                        |
| AH3<br>10<br>□ ↓ ↑ •               | ЯН3<br>第三报警回差   | 0~9999             | 第三报警的回差值/位式控制回差值                                                                                |
| AH4<br>10<br>□ ↓ ↑ ◀               | 8 # 4<br>第四报警回差 | 0~9999             | 第四报警的回差值                                                                                        |
| CON 0                              | [on<br>内部保留     | 0~1                | 内部保留参数                                                                                          |
| P1 500                             | P I<br>比例带      | 0~9999             | 显示比例带的设定值(P值越小,系统响应越快;P值越大,系统响应越慢;P值为O成位式控制)                                                    |
| 11<br>10<br>Q 1                    | //<br>积分时间      | 1~9999 秒           | 显示程序积分时间的设定值,用于解除比例控制所产生的残留偏差。I 值越小,积分作用增强; I 值越大,积分作用相应减弱。设定为(9999)时,积分作用为 OFF。                |
|                                    | ♂!<br>微分时间      | 1~9999 秒           | 显示程序微分时间的设定值, D 值越小, 系统微分作用越弱; D 值越大, 系统微分作用越强; 设定为 0 时, 微分动作则成 OFF; 用于预测输出的变化, 防止扰动, 提高控制的稳定性。 |
| T0 1                               | 「 []<br>运算周期    | 1~200S<br>精度: 10mS | 显示 PID 调节运算周期                                                                                   |
| T1 1 Q 1                           | 「  <br>输出周期     | 1~200S<br>精度: 10mS | 显示控制输出的周期。<br>(开关量控制输出时有此参数)                                                                    |
| AUT 0                              | Au Ł<br>自整定     | 0~1                | Aut=0: 关-手动设定 PID 参数值<br>Aut=1: 开-自动演算(自整定)<br>(参见 7.3 说明)                                      |
| EH<br>0<br>0<br>返 回 到 初<br>始画面 LOC | EH<br>逻辑回差值     | 0~9999<br>同通道小数点   | 显示自动演算输出时的逻辑回差值<br>(开关量控制输出时此参数才有效)                                                             |

## 5.2二级参数设置

在实时测量状态下,按压□键 PV 显示 LOC,SV 显示参数数值:按□或□键来进行设置,长按Ū键 2 秒可返回上一个参数,当 Loc=132 时,按压□键 4 秒,可进入二级参数。

| 出厂设置                | 参数        | 设定范围 | 说明                                                                                       |
|---------------------|-----------|------|------------------------------------------------------------------------------------------|
| Pn<br>27<br>□ ↓ ↑ • | P. 输入分度号  | 0~35 | 设定输入分度号类型(见选型表)                                                                          |
|                     | ⊌₽<br>小数点 | 0~3  | dP=0: 无小数点<br>dP=1: 小数点在十位(显示 XXX.X)<br>dP=2: 小数点在百位(显示 XX.XX)<br>dP=3: 小数点在千位(显示 X.XXX) |

| ALM1           |                                          |            | ALM1=0: 无报警                              |
|----------------|------------------------------------------|------------|------------------------------------------|
| 2              | ALAI                                     | 0∼2        | ALM1=0:                                  |
|                | 第一报警方式                                   | _          | ALM1=2:第一报警为上限报警                         |
| ALM2           |                                          |            | ALM2=0: 无报警                              |
| 1              |                                          |            | ALM2=1: 第二报警为下限报警                        |
|                |                                          |            | ALM2=2: 第二报警为上限报警                        |
| - <b>V</b> 1 - |                                          |            | ALM2=3: 第二报警为偏差外报警                       |
|                | RL AZ                                    | 0∼7        | ALM2=4: 第二报警为偏差内报警                       |
|                | 第二报警方式                                   | ,          | ALM2=5: 第二报警为上偏差报警                       |
|                |                                          |            | ALM2=6: 第二报警为下偏差报警                       |
|                |                                          |            | ALM2=7: 第二报警为 LBA 报警(1-9999S)            |
|                |                                          |            | ALM2=8: 第二报警为程序停止报警                      |
| ALM3           |                                          |            | ALM3=0: 无报警                              |
| 0              |                                          |            | ALM3=1: 第三报警为下限报警                        |
|                |                                          |            |                                          |
| □↓ ↑◀          |                                          |            | ALM3=2: 第三报警为上限报警                        |
|                | 8L ñ 3                                   | 0.0        | ALM3=3: 第三报警为偏差外报警                       |
|                | 第三报警方式                                   | 0~8        | ALM3=4: 第三报警为偏差内报警                       |
|                |                                          |            | ALM3=5: 第三报警为上偏差报警                       |
|                |                                          |            | ALM3=6: 第三报警为下偏差报警                       |
|                |                                          |            | ALM3=7: 第三报警为 LBA 报警(1-9999S)            |
|                |                                          |            | ALM3=8: 第三报警为程序停止报警                      |
| ALM4           |                                          |            | ALM4=0: 无报警                              |
| 0              |                                          |            | ALM4=1: 第四报警为下限报警                        |
| □↓ ↑◀          |                                          |            | ALM4=2: 第四报警为上限报警                        |
|                | 01 711                                   |            | ALM4=3: 第四报警为偏差外报警                       |
|                | 8Lā4<br>第四报警方式                           | 0∼8        | ALM4=4: 第四报警为偏差内报警                       |
|                | 为四队音刀八                                   |            | ALM4=5: 第四报警为上偏差报警                       |
|                |                                          |            | ALM4=6: 第四报警为下偏差报警                       |
|                |                                          |            | ALM4=7: 第四报警为 LBA 报警(1-9999S)            |
|                |                                          |            | ALM4=8: 第四报警为程序停止报警                      |
| ALG            |                                          |            | ALG=0 无闪烁报警                              |
| 0              | ALG<br>闪烁报警                              | 0∼1        | , -, , , , , , , , , , , , , , , , , ,   |
|                | 内冰拟音                                     |            | ALG=1 带闪烁报警                              |
| FK             |                                          |            | 20. 黑 6) 主 法 b. 5 数 65 . 1. 日 二 庄 W - 1. |
| 0              | F U                                      | 0~19 次     | 设置仪表滤波系数防止显示值跳动                          |
|                | 滤波系数                                     |            | (见仪表参数说明 2)                              |
| Addr           |                                          |            |                                          |
| 1              | Rddr                                     | 0∼250      | 设定通讯时本仪表的设备代号                            |
|                | 设备号                                      |            |                                          |
| bAud           |                                          |            | Baud=0: 通讯波特率为 1200bps;                  |
| 3              |                                          |            | Baud=1: 通讯波特率为 2400bps                   |
|                | 22 2 1 1 1 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0∼4        | Baud=2: 通讯波特率为 4800bps;                  |
| _ 🗸 1 -        | 通讯波特率                                    |            | Baud=3: 通讯波特率为 9600bps                   |
|                |                                          |            | Baud=4: 通讯波特率为 19200bps                  |
| Pr-A           |                                          |            | Pt-A=0: 无报警打印功能                          |
| 0              | Pr-8                                     | 0∼1        | Pt-A=0: 无报警打印功能                          |
|                | 报警打印功能                                   | 0, ~1      | PT-A=1: 有报音打印功能(尤打印功能的,尤此多   数)          |
| , <b>v</b> i   |                                          |            | <b></b>                                  |
| Pr-T           | Pr-E                                     | 4 - 2400 / | 设定定时打印的间隔时间                              |
|                | 定时打印间隔时间                                 | 1~2400 分   | (无打印功能时,无此参数)                            |
|                |                                          |            |                                          |

| Pr-U 0                  | Pr-U<br>打印单位        | 0~45      | 参看单位设定功能代码表<br>(无打印功能时,无此参数)                                                                                                                                 |
|-------------------------|---------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POST 2                  | РО5Г<br>上电过程控制方式    | 0~3       | POST=0: 上电后为停止状态。 POST=1: 上电时,直接从起始段开始运行曲线。 POST=2: 上电时,从当前测量值与设定值相同点的升温段开始升温,如果没有落在任何一个升温段,测量值先控制到起始段的设定值后再开始运行设定曲线。 POST=3: 上电时,等测量值回到断电时刻的设定值后,再继续运行设定曲线。 |
| Mode 1 □ ↓ ↑ •          | ōodE<br>PID 作用方式    | 0~1       | Mode=0: 正作用<br>Mode=1: 反作用                                                                                                                                   |
| out 1                   | out<br>PID 输出类型     | 0~1       | Out=0:继电器、SSR(固态继电器控制输出)、SCR-可控硅过零触发<br>Out=1:电流、电压变送输出                                                                                                      |
| Disp<br>0               | d, 5P<br>PID 输出显示   | 0∼5       | disp=0: SV 数字显示控制目标值<br>disp=1: SV 数字显示 PID 运算结果                                                                                                             |
| PID 0                   | PI d<br>算式类型        | 0~1       | PID=0: 人工智能算式,适用于滞后大,控制速度比较缓慢的控制系统,如电炉的加热<br>PID=1: 人工智能算式,适用于控制响应速度迅速的系统,如调节阀对压力、流量等物理量的控制系统                                                                |
| ctrl 0                  | ctrl<br>控制方式选择      | 0         | ctrl=0:单路输入 PID 控制                                                                                                                                           |
| PIDL 0.0                | PI dL<br>PID 控制输出下限 | 0~100%    | PID 控制输出下限幅值(见注 1)                                                                                                                                           |
| PIDH<br>100.0           | PI dH<br>PID 控制输出上限 | 0~100%    | PID 控制输出上限幅值(见注 1)                                                                                                                                           |
| Pb<br>0                 | РЬ<br>输入的零点迁移       | 全量程       | 输入零点的迁移量(见注 2)                                                                                                                                               |
| PK<br>1. 000<br>□ ↓ ↑ • | タビ<br>输入的量程比例       | 0~1.999 倍 | 输入量程的放大比例(见注 2)                                                                                                                                              |
| Cb<br>0                 | [b<br>冷端补偿的零点迁移     | 全量程       | 冷端补偿的零点迁移量(热电偶输入时,有此参数)<br>(见注 2)                                                                                                                            |
| CK<br>1.000<br>□ ↓ ↑ •  | [ と<br>冷端补偿的放大比例    | 0~1.999 倍 | 冷端补偿的放大比例(热电偶输入时,有此参数)<br>(见注 2)                                                                                                                             |
| oub<br>0.000<br>□ ↓ ↑ ◀ | 。。b<br>变送输出的零点迁移    | 0~1.2     | 变送输出的零点迁移量(见注3)                                                                                                                                              |

|                                               |                    | ı         | T                                                 |
|-----------------------------------------------|--------------------|-----------|---------------------------------------------------|
| ouk 1.000                                     | وں ہے<br>受送输出的放大比例 | 0∼1.2     | 变送输出的放大比例(见注3)                                    |
| 0.000                                         | C Ł Ь<br>控制输出的零点迁移 | 0~1.2     | 控制输出的零点迁移量(Out=1 时,有此参数)<br>(见注 3)                |
| Ctk 1.000                                     | c ヒ ヒ<br>控制输出的放大比例 | 0~1.2     | 控制输出的放大比例(Out=1 时,有此参数)(见注 3)                     |
| ouL<br>0                                      | ou し<br>变送输出量程下限   | 全量程       | 变送输出的下限量程                                         |
| 0uH<br>1000<br>□ ↓ ↑ •                        | □ □ \              | 全量程       | 变送输出的上限量程                                         |
| GL<br>0                                       | ω<br>闪烁报警下限        | 全量程       | 闪烁报警下限量程(测量值低于设定值时,显示测量值并闪烁,ALG=1 时有此功能)          |
| GH<br>1000                                    | □ H<br>闪烁报警上限      | 全量程       | 闪烁报警上限量程(测量值高于设定值时,显示测量值并闪烁,ALG=1 时有此功能)          |
| PL 0                                          | P L<br>测量量程下限      | 全量程       | 设定输入信号的测量下限量程(见注4)                                |
| PH 1000                                       | PH<br>测量量程上限       | 全量程       | 设定输入信号的测量上限量程(见注4)                                |
| Cut<br>0<br>0<br>◎ ↓ ↑ ©<br>返回到初<br>始画面<br>Pn | □ Ŀ<br>小信号切除       | 0.0~100.0 | 设定输入信号的小信号切除量(输入信号小于设定的百分比时,显示为 0,本功能仅对电压、电流信号有效) |

注 1: PIDL、PIDH 的定义: PIDL、PIDH 等于仪表控制输出的上下限幅值

如:设定 PIDL=10%,则仪表控制输出量最小为: 10%。设定 PIDH=90%,则仪表控制输出量最大为: 90%。

注 2: Pb、Pk、Cb、Ck的计算公式:

Pk=预定全量程÷显示量程×原 Pk;

Pb=预定量程下限-显示量程下限×Pk+原 Pb;

例: 一直流电流 4-20mA 仪表,测量量程为: -200-1000KPa,现作校对时发现输入 4mA 时显示-202,输入 20mA 时显示 1008。(仪表设定: Pb=0, Pk=1)

根据公式:

Pk=预定全量程÷显示全量程×原 Pk

Pk= [1000- (-200) ] ÷ [1008- (-202) ] ×1=1200÷1210×1≈0.992

Pb=预定量程下限-显示量程下限×Pk+原 Pb

Pb=-200- (-202×0.992) +0=-200- (-200.384) =0.384

现设定: Pb=0.384; Pk=0.992

注 3:输出迁移 Oub、OuK、Ctb、Ctk,设置如下:

仪表变送及控制输出以  $0\sim20$ mA 或  $0\sim5$ V 校对,如欲更改输出量程或输出偏差调整,可以利用以下公式实现。

公式中, 当输出为电流信号, 满量程=20, 当输出为电压信号, 满量程=5。

例: 变送电流  $0\sim20$ mA 输出,现欲改为  $4\sim20$ mA 输出。测量时,输出零点值输出为 0mA,输入满量程时输出为 20mA,当前 0ub=0,当前 0uK=1。

新0ub=0-
$$\frac{0-4}{20}$$
=0.2 新0uK=1- $\frac{20-20}{20}$ =1

所以,将 Oub 设置为 0.2, OuK 不变,就实现了从  $0\sim 20$ mA 输出改为  $4\sim 20$ mA 输出了。

注 4: 量程 PL、PH 的设定如下:

例:一直流电流输入仪表,原量程为 0-500Pa,欲将量程改为: -100.0 $\sim$ 500.0Pa 设定: DP=1(小数点在十位),PL=-100.0,PH=500.0。按确认键,量程更改完毕。

单位设定功能代码表:

| 代码 | 0    | 1    | 2    | 3    | 4    | 5     | 6        | 7     | 8   | 9   |
|----|------|------|------|------|------|-------|----------|-------|-----|-----|
| 单位 | Kgf  | Pa   | KPa  | Mpa  | mmHg | mmH2O | bar      | °C    | %   | Hz  |
| 代码 | 10   | 11   | 12   | 13   | 14   | 15    | 16       | 17    | 18  | 19  |
| 单位 | m    | t    | 1    | m³   | Kg   | J     | MJ       | GJ    | Nm³ | m/h |
| 代码 | 20   | 21   | 22   | 23   | 24   | 25    | 26       | 27    | 28  | 29  |
| 单位 | t/h  | l/h  | m³/h | kg/h | J/h  | MJ/h  | GJ/h     | Nm³/h | m/m | t/m |
| 代码 | 30   | 31   | 32   | 33   | 34   | 35    | 36       | 37    | 38  | 39  |
| 单位 | l/m  | m³/m | kg/m | J/m  | MJ/m | GJ/m  | $Nm^3/m$ | m/s   | t/s | l/s |
| 代码 | 40   | 41   | 41   | 43   | 44   | 45    |          |       |     |     |
| 单位 | m³/s | kg/s | J/s  | MJ/s | GJ/s | Nm³/s |          |       |     |     |

### 5. 3 三级参数设定(设定曲线设置菜单)

在实时测量状态下,长按 ②键 4 秒,即进入三级参数的设置:

| 出厂设置                  | 参数                  | 设定范围       | 说明                                                                           |
|-----------------------|---------------------|------------|------------------------------------------------------------------------------|
| T-U 1 □ ↑ •           | 厂 - u<br>设定曲线时间     | 0~1        | T-u=0: 时间单位为秒<br>T-u=1: 时间单位为分                                               |
| STA 1                 | 5 / A<br>设定曲线的开始段   | 1~59 段     | 设定曲线的开始段号。                                                                   |
| LOOP<br>0             | LooP<br>循环的起始段      | 1~59       | 程序执行完后循环执行的起始段,0:不循环,1~59:从第1~59 段开始循环执行。循环到起始段前,测量值要回到起始段的初始设定值后再开始计时并执行程序。 |
| SV00<br>50<br>□ ↓ ↑ • | 5800<br>第 01 段控制目标值 | -1999~9999 | 显示第 01 段的控制起始目标值,终止目标值就是第 01 段的起始目标值,以下以此类推。                                 |

| TI00<br>10<br>Sy 1 4                   | 「  00<br>第 01 段控制时间   | 0∼9999     | 显示第 01 段的控制时间<br>单位:分、秒(由 T-U 设定选择)          |
|----------------------------------------|-----------------------|------------|----------------------------------------------|
| SV01<br>50                             | 580 /<br>第 02 段控制目标值  | -1999~9999 | 显示第 02 段的控制起始目标值,终止目标值就是第 02 段的起始目标值,以下以此类推。 |
| TI01<br>10<br>Q                        | 「! []  <br>第 02 段控制时间 | 0~9999     | 显示第 02 段的控制时间<br>单位:分、秒(由 T-U 设定选择)          |
| SV02<br>50                             | 5802<br>第 03 段控制目标值   | -1999~9999 | 显示第 03 段的控制起始目标值                             |
| TI02<br>10<br>\$\sqrt{1}\$             | 「! O 2<br>第 03 段控制时间  | 0∼9999     | 显示第 03 段的控制时间<br>单位:分、秒(由 T-U 设定选择)          |
|                                        |                       |            |                                              |
| SV59<br>50                             | 5859<br>第 60 段控制目标值   | -1999~9999 | 显示第 59 段的控制起始目标值                             |
| TI59<br>10<br>□↓↑ 【<br>返回到初<br>始画面 T-U | 「! 59<br>结束段时间        | 0          |                                              |

5.3.1: 当 LOOP=0(不循环),程序控制结束时,PID 停止输出,如需重新控制,要同时按压"◎"键和"⑥"键将控制曲线清零,再按"⑥"键启动控制。当 LOOP≠0(循环),程序控制按设置的循环段开始循环控制。

5.3.2: 各段的升温速度不能大于最大升温速度; 各段的降温速度不能小于最大降温速度。

最大升温速度:全功率运行时的升温速度;最大降温速度:零功率运行时的降温速度。

举例:系统在 100%功率运行时的升温速度是 3°C/分钟,0%功率运行时的降温速度是 0.2°C/分钟,那么系统的最大升温速度就等于 3°C/分钟,最大降温速度是 0.2°C/分钟。下面的设置就是正确的:

SV00=50℃, TI00=10 分钟;

SV01=55℃, TI01=50 分钟;

SV02=50°C, TI02=0 分钟;

第零段的升温速度= (SV01-SV00) /TI00= (55-50) ℃/10 分钟=0.5℃/分钟<3℃/分钟;

第一段的降温速度=(SV02-SV01)/TI01=(55-50)°C/50 分钟=0.1°C/分钟<0.2°C/分钟。

下面的设置就不正确:

SV00=50°C, TI00=1 分钟

SV01=60°C, TI01=50 分钟;

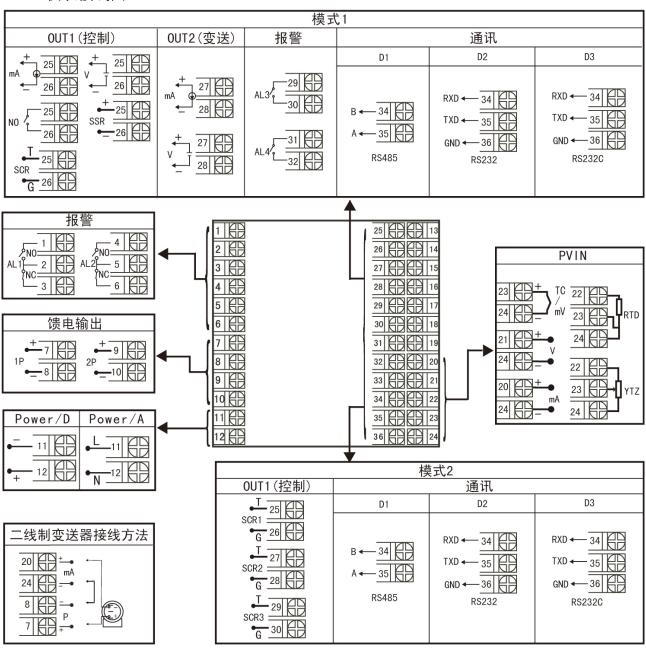
启动段的升温速度= (SU01-SU00) /TI00= (60-50) °C/1 分钟=10°C/分钟>3°C/分钟。

只有各段参数设置正确的情况下,控制器才能准确跟随控制曲线。

5.3.3: 仪表总共有 60 段曲线,如用户只需要 5 段曲线,可将第 6 段的控制时间设为 0,即实现关段设置。

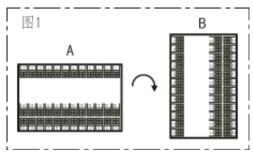
# 六、仪表型谱及接线图

# 6. 1 仪表型谱


 $NHR-5400 \square - \square - \square / \square / \square / \square \ ( \quad ) \ - \square - \ ( \quad )$ 

1 234567 89

| 1 (2) (3) (4) (5) (6) (7) (8) (9) |                                                  |          |                           |  |  |
|-----------------------------------|--------------------------------------------------|----------|---------------------------|--|--|
| ①规格尺寸                             |                                                  | ②输入分度号   |                           |  |  |
| 代码                                | 宽*高*深                                            | 代码       | 分度号(测量范围)                 |  |  |
| Α                                 | 160*80*110mm(横式)                                 | 00       | 热电偶 B(400~1800℃)          |  |  |
| В                                 | 80*160*110mm(竖式)                                 | 01       | 热电偶 S(0~1600℃)            |  |  |
| С                                 | 96*96*110mm(方式)                                  | 02       | 热电偶 K(0~1300℃)            |  |  |
| ③控                                | 制输出 1 (OUT1)                                     | 03       | 热电偶 E(0~1000℃)            |  |  |
| 代码                                | 输出类型(负载电阻 RL)                                    | 04       | 热电偶 T(-200.0~400.0℃)      |  |  |
| 0                                 | 4-20mA(RL≤600Ω)                                  | 05       | 热电偶 J (0~1200℃)           |  |  |
| 1                                 | 1-5V (RL≥250KΩ)                                  | 06<br>07 | 热电偶 R(0~1600℃)            |  |  |
| 2                                 | 0-10mA(RL≤1.2KΩ)                                 | 08       | 热电偶 N(0~1300℃)            |  |  |
| 3                                 | 0-5V (RL≥250KΩ)                                  | 09       | F2 (700~2000°C)           |  |  |
| 4                                 | 0-20mA(RL≤600Ω)                                  | 10       | 热电偶 Wre3-25(0~2300℃)      |  |  |
| 5                                 | 0-10V (RL≥4KΩ)                                   | 11       | 热电偶 Wre5-26(0~2300℃)      |  |  |
| K1                                | 继电器接点输出                                          | 12       | 热电阻 Cu50(-50.0~150.0℃)    |  |  |
| K3                                | 可控硅过零触发脉冲输出                                      | 13       | 热电阻 Cu53(-50.0~150.0℃)    |  |  |
| K4                                | 固态继电器驱动电压输出                                      | 14       | 热电阻 Cu100(-50.0~150.0℃)   |  |  |
| K6                                | 三相可控硅过零触发脉冲输出                                    | 15       | 热电阻 Pt100(-200.0~650.0℃)  |  |  |
| 8                                 | 特殊规格                                             | 16       | 热电阻 BA1(-200.0~600.0℃)    |  |  |
| (4)变:                             | 送输出 2(OUT2)                                      | 17       | 热电阻 BA2(-200.0~600.0℃)    |  |  |
| 代码                                | 输出类型(负载电阻 RL)                                    | 18       | 线性电阻 0~400Ω(-1999~9999)   |  |  |
| X                                 | 无输出                                              | 19       | 远传电阻 0-350Ω (-1999~9999)  |  |  |
| 0                                 | 4-20mA (RL≤500Ω)                                 | 20       | 远传电阻 30-350Ω (-1999~9999) |  |  |
| 1                                 | 1-5V (RL≥250KΩ)                                  | 21       | 0∼20mV (-1999∼9999)       |  |  |
| 2                                 | 0-10mA (RL≤1KΩ)                                  | 22       | 0∼40mV(-1999∼9999)        |  |  |
| 3                                 | 0-5V (RL≥250KΩ)                                  | 23       | 0~100mV(-1999~9999)       |  |  |
| 4                                 | 0-20mA (RL≤500Ω)                                 | 24       | -20~20mV(-1999~9999)      |  |  |
| 5                                 | 0-10V (RL≥4KΩ)                                   | 25       | -100~100mV(-1999~9999)    |  |  |
| 8                                 | 特殊规格                                             | 26<br>27 | 0∼20mA (-1999∼9999)       |  |  |
| ⑤报警(继电器接点输出)                      |                                                  | 28       | 0∼10mA (-1999∼9999)       |  |  |
| 代码                                | 报警限数                                             | 29       | 4∼20mA (-1999∼9999)       |  |  |
| X                                 | 无输出                                              | 30       | 0∼5V (-1999∼9999)         |  |  |
| 1                                 | 1 限报警                                            | 31       | 1∼5V (-1999∼9999)         |  |  |
| 2                                 | 2 限报警                                            | 32       | -5~5V (-1999~9999)        |  |  |
| 3                                 | 3 限报警                                            | 33       | 0~10V (-1999~9999)(不可切    |  |  |
| 4                                 | 4 限报警                                            | 34       | 换)                        |  |  |
| ( <b>6</b> )通讯输出                  |                                                  | 35       | 0~10mA 开方(-1999~9999)     |  |  |
| 代码                                | 通讯接口(通讯协议)                                       | 55       | 4~20mA 开方(-1999~9999)     |  |  |
| 7 (和)<br>X                        | 一世                                               | 56       | 0~5V 开方 (-1999~9999)      |  |  |
| D1                                | <sup>九珊                                   </sup> |          | 1~5V 开方 (-1999~9999)      |  |  |
| D1                                | N3403 地州安口(WIUUUUS)                              |          |                           |  |  |


| D2     | RS232 通讯接口(Modbus)    |        | 全切换                      |
|--------|-----------------------|--------|--------------------------|
| D3     | RS232C 打印接口           |        | 特殊规格                     |
| 7 馈电输出 |                       | 8供电电源  |                          |
| 代码     | 馈电输出(输出电压)            | 代码     | 电压范围                     |
| Х      | 无输出                   | Α      | AC/DC 100~240V (50/60Hz) |
| 1P     | 1路馈电输出                | D      | DC 20∼29V                |
| 2P     | 2 路馈电输出               | 9 备注   |                          |
|        | 如 2P(12/24)表示第一路 12V, | 无备注可省略 |                          |
|        | 第二路 24V 馈电输出。         |        |                          |

### 6. 2 仪表接线图



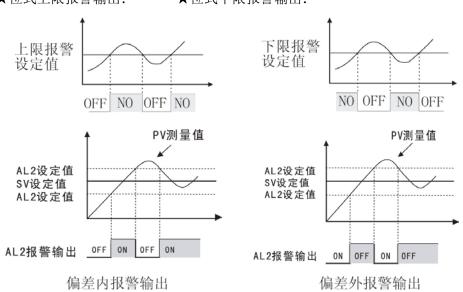
规格尺寸为A、B、C型接线图

注: 横竖式仪表后盖接线端子方向不一样, 见示意图 1。



备注:特殊订货与本接线图不同之处,请以随机接线图为准。

## 七、调节设置


### 7.1 报警设置

- 1. 报警输出(AL1、AL2、AH1、AH2)
- ★ 关于回差:

本仪表采用报警输出带回差,以防止输出继电器在或报警输出临界点上下波动时频繁动作。 具体输出状态如下:

★位式上限报警输出:

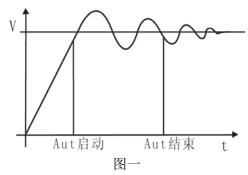
★位式下限报警输出:



### 7.2 自动/手动无扰动切换方法

在仪表自动控制输出状态下,同时按压◎键和 **②**键,仪表将自动跟踪输出量,A/M 指示灯 (红)亮,即已完成

自动/手动无扰动切换,此时可按△或 ☑键手动改变仪表输出量的百分比(范围: 0~100%)。


手动状态下, 仪表 PV 显示: 实时测量值; SV 显示: 仪表输出量的百分比。

### 7.3 系统 PID 参数和自整定自动状态

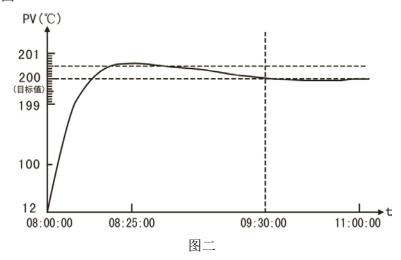
温控器具有先进 PID 控制算法,在控制系统设计和安装正确的前提下,控制品质的优劣往往取决于 P、I、

D 三个参数的选择。温控器有 P、I、D 参数的出厂默认值,但对于绝对多数被控对象,默认参数并不能达到理想的控制效果,这时可以启动自整定功能。通过自整定,温控器可以根据被控对象的特性,自动寻找最优参数以达到很好的控制效果:无超调、无振荡、高精度、快响应。

启动自整定方式: 温控器具备 PID 参数自整定功能,产品初次使用时,需启动自整定功能以确定最适合系统控制的 P、I,D 控制参数。将 LOC 密码设置为 0 或者 132 后按 键进入一级菜单,继续按 键找到参数 Aut,将 Aut 由 0 改为 1 开启自整定。如图一所示整定开启后 A/M 灯快速闪烁表明仪表已进入自整定状态。温控器采用 ON-OFF 二位式整定方法,输出 0%或 100%使系统形成振荡,然后根据系统响应曲线计算 PID 参数。对象时间常数越大,自整定所需时间越长,可从数秒至数小时不等。如果要提前放弃自整定,可将 Aut 设置成 0 停止自整定。自整定被停止或结束后 A/M 灯由闪烁变成熄灭,进入自动控制状态。在任何时候都可执行自整定,但通常只在设备初始调试阶段进行一次整定即可,但当对象特性发生了改变,则应重新进行自整定。



温控器采用真正的人工智能算式,无需人工整定参数,控温精度基本达±0.1℃,无超调、欠调,达国际先进水平!


工作条件:

- A、控制对象:一体化高温电炉(型号: SXC-1.5)
- B、炉膛内放满加热材料
  - C、控制目标值: 200.0℃

工作情况:

- A、真正人工智能算式,无需人工整定参数
- B、最大超调 0.7℃
- C、到达稳定时间 25 分钟
- D、稳定后控制精度基本达±0.1℃

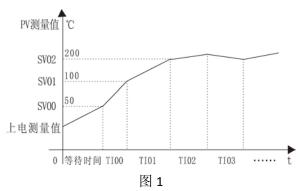
工作曲线: 见图二



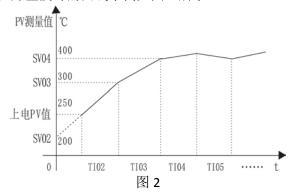
### 7.4 人工调整参数方法

本温控器自整定的准确度较高,可满足绝大多数的对象要求。但当对象较复杂,例如非线性、时变、大滞后等对象,可能需要多次整定或手工调整才能达到较好的控制效果。手工调整时,观察测量曲线,若系统长时间处于振荡可增大 P 或减小 D 以消除振荡;若系统长时间不能到达目标值可减小 I 以加快响应速度;若系统超调过多可增加 I 或增加 D 以减小超调。调试时可进行逐试法,即将 P、I、D 参数之一进行增加或者减少,如果控制效果变好则继续同方向改变该参数,相反则进行反向调整,直到控制效果满足要求。

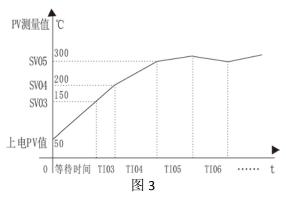
### 7.5 算式类型选择 (PID)


本温控器采用的是人工智能算式: 当控制系统的滞后大,控制速度比较缓慢时,如电炉的加热,此时PID=0;当控制系统的控制响应速度迅速,如调节阀对压力、流量等物理量的控制时,此时PID=1。

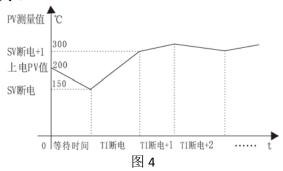
### 7.6 关于 60 段程序控制仪表的说明


POST=0:上电后曲线处于停止状态,输出最小,按" 使开始控制,待测量值到达起始段设置的目标值后,控制按程序段设定的各段时间与控制目标值进行控制。

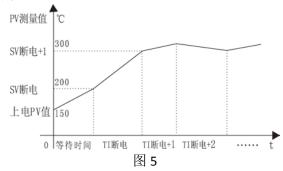
POST=1: 上电时, 仪表按程序段设定的各段时间与控制目标值进行控制。


当 STA=1 时,对应起始段为 SU00,等待时间是由用户设置的起始段目标值及用户设备功率所决定。 曲线举例如右图 1 所示:




POST=2: 上电测量值落在升温段时的曲线举例如图 2 所示:




POST=2: 上电测量值没有落在升温段里,则从当前值控制到 STA 指定起启段目标值后再走曲线,例如 STA=4 曲线举例如图 3 所示:



POST=3: 上电当测量值比断电时刻的设定值高时,温度要降到断电时刻的设定值后,再继续运行设定曲线落,曲线举例如图 4 所示:



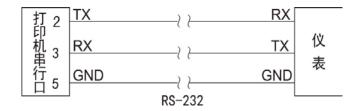
POST=3: 上电当测量值比断电时刻的设定值低时,温度要升到断电时刻的设定值后,再继续运行设定曲线落,曲线举例如图 5 所示:



注: 仪表在上电必须根据工艺要求来设定曲线,先启动自整定,启动自整定后,设定曲线转入暂停状态,温控器以当前目标值进行自整定,整定结束后当测量值到达当前目标值时,设定曲线再继续运行。 7.7 打印功能

### 1、手动打印

在仪表测量值显示状态下,按压"一"键,即打印出当前的实时测量值。


### 2、定时打印

当时间测定等于间隔时间时,仪表将控制打印机进行定时打印,定时打印时将打印当前实时测量值。 打印格式为:

| TIME PRINT |         |
|------------|---------|
| 2009-04-14 | 日期      |
| 21: 06: 15 |         |
| PV= -250°C | 第一通道测量值 |
| SEG=01     | 控制段号    |

SV= 465°C ------设定值
Out= 0.0% ------百分比输出值
Alm: O O ------报警状态

3、接线方式



# 八、仪表通讯

本仪表具有通讯功能,可在上位机上实现数据采集、参数设定、远程监控等功能。 技术指标:通讯方式:串行通讯 RS485, RS232;

波特率: 1200  $\sim$  9600 bps;

数据格式:一位起始位,八位数据位,一位停止位。

★具体参数参见《仪表通讯光盘》